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APPLICABIE FOR LARGE INFLOW AND BLADE ANGLES AND
ANY REASONABIE BIADE GEOMETRY

By Walter Castles, Jr., and Noah C. New
- SUMMARY

Simple approximate solutions are derived for the relationships
between the rotor thrust and flight-path velocity components and the
rotor blade angle, torque, and in-plane forces. These approximate solu-
tions, based upon the assumption of a triangular distribution of blade
circulation and a parabolic variation of blade-element profile drag with
1ift, are sufficiently accurate for preliminary calculations and the
determination of the equilibrium angle of attack and lateral tilt of the
tip-path plane.

A set of more exact blade-element equations is then derived giving
the relations between the thrust and flight-path velocity components and
the equilibrium blade angles, torque, and in-plane forces and moments.
Neither the blade-element nor the approximate solutions are dependent
upon the usual approximations that the inflow angle and blade angle of
the blade elements are small angles. Thus the present equations should
be useful for convertaplane as well as helicopter calculations.

Tt appears that nonlinear blade twist may be desirable for a con-
vertaplane rotor in order to obtain useful propeller efficiencies.
Therefore, the blade-element equations have been arranged so that any
reasonable distribution of blade twist msy be used. Also, the equations
were set up in terms of an arbitrary blade-chord distribution since it
was found that the use of the actual blade-chord distribution and the
elimination of the usual assumption that the blade airfoil extended
inboard to the axis of rotation largely eliminated the necessity for the
usual reverse-flow corrections. Tables of the necessary factors are
included for blades having a linear taper, linear twist, and an sirfoil
contour from r = 0.15R to T = R and for blades having a linear taper,
helical twist, and airfoil contours extending from r = 0.20R to r =R
(vhere r is the radius of the blade element and R, the radius of the
blade tip).
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The present analysis is based upon the following assumptions:

(1) The blade-element 1ift coefficient may be assumed to be pro- .
portional to the sine of the blade-element angle of attack, and the
blade-element profile-drag coefficient may be represented by the first
three terms of a Fourier series in the blade-element angle of attack.t
This implies the neglect of blade stall effects in the equations for he‘
blade angles. The effect of tip stall is taken into account in the

equations for the rotor torque.

(2) The blade axes may be assumed'to be, and to -remain, straight
lines.

(3) The lateral and longitudinal variations of the normal component
of the induced velocity at the tip-path plane may be assumed to be linear.

(1) The effects of compressibility on the tip sections of the
advancing blade may be neglected.

(5) All radial velocity components and the tangential components
of the induced velocity may be neglected.

(6) Blade tip effects may be neglected.

A comparison of the results given by the present equations with the .

full-scale helicopter test data of NACA TN 1266 shows good agreement for-
the helicopter flight range covered in.that report.

INTRODUCTION

This project, which was conducted at the Georgia Institute of
Technology Engineering Experiment Station under the sponsorship and with
the financial assistance of the National Advisory Committee for Aeronautics,
vas undertaken in order to develop a blade-element analysis for lifting
rotors that would be useful for convertaplane calculations. This neces-
sitated the elimination of the usual approximations that the blade-element
inflow angle ¢ and the blade angle 6 are small angles and required =
reasonably exact treatment of the blade geometry.

It was found that a practical approach to the problem of eliminating
the small-angle approximations for the 1ift forces could be obtained by
writing the 1ift coefficient of the blade element as

él =a sin a,. = a(sin 8, cos ¢v + cos 6, sin ¢v)

T
-,
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and, consequently, the thrust component of force dL cos ¢v on a blade
element as

dL cos @y = % pa(U cos ¢V)[%in 6y (U cos #y) + cos 6y(U sin ¢V§]c dr

Similarly, the tangentiai‘component of the 1ift on a blade element may be
expressed as

dL sin @, = % pa(U sin ¢v)[%in 6,(U cos g,) + cos 6,(U sin ¢vi]c ar

It was also found that the small-angle approximations could be largely
eliminated for the profile-drag terms by expressing the blade-element
profile-drag coefficient cg, 8s

cdo = € + €1 sin-ar + €p cog o

The exact blade geometry has been retained throughout by expressing
the blade-chord and blade-twist distribution in the form of the following
constants:

1
op = ;L:jp exP 1 ax
7R Xq

. 1 1
' Ope = ;ﬁf\/ﬁ ¢ cos Gtxn'l dx
X1

and

Q
I

1 1 n-1
ns :a;xjp c sin Gtx dx
*1
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vhere 6 1is the blade twist in the angle of zero lift between the

reference station and nondimensional radius x. Values of these con-
stants are given in tables 1 to 3 for blades having linear taper, linear
twist, and x; = 0.15 and in tables 1, L, and 5 for blades having linear

taper, helical twist, and x3 = 0.20.

The present system of equations has been set up with respect to tip-
path-plane coordinates or coordinates based on the virtual axis of rota-
tion (fig. 1) rather than the usual coordinate system based on the plane
of zero feathering in order to obtain shorter expressions for the in-plane
rotor forces and moments. The use of coordinates alined with the virtual
axis of rotation also facilitates the treatment of some accelerated flight
problems.

Certain refinements in the induced-velocity theory, as given in
reference 1, have been incorporated with some minor changes in the
present equations along with the necessary terms for an arbitrary angular
velocity of roll and pitch of the tip-path plane.

Standard NACA nomencleture has been used vhere possible, with the
subscript v for virtual axis of rotation appended to the usual symbols
vhich, in this paper, have a similar meaning but different numerical

values.
NOTATION
a slope of 1ift curve for blade element at O.7T5R (per radian)
ag rotor coning angle
| ap coning angle for zero blade-root bending moment
ay coefficient of sine component of blade cyclic-pitch angle

measured with respect to tip-path plane where
6, = Ag + 8y - a7 sin ¥ + by cos ¥

also coefficient of cosine term of Fourier series for
blade flapping angle £ measured with respect to plane
of zero feathering where

B =28y -aj cos ¥ - by sin ¥ - a5 cos 2¢ - by sin 2 - . . .

e ——— e e ——— — — e e e
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a2

cq,

cy

coefficient of second-harmonic cosine term in Fourier series
for blade flapping angle

mean blade pitch angle at reference station, positive above
tip-path plane

number of blades in rotor

coefficient of cosine component of blade cyclic-pitch angle
measured with respect to the tip-path plane; also coeffi-
cient of sine term of Fourier series for blade flapping
angle measured with respect to plane of zero feathering

coefficient of second-harmonic sine term in Fourier series
for blade flapping angle

blade chord at radius r

extended blade-root chord at r = O (for linear taper)
section profile-drag coefficient

section 1lift coefficient

rotor rolling-moment coefficient measured about X-axis

M
% onOZR?

rotor pitching-moment coefficient meassured about Y-axis
My
% pna?R?

rotor torque coefficient ——EL——>
pr°RY

increment to Cq from tip stall on retreating blade

rotor thrust coefficient ——JE—E

rotor X-force coefficient ___EEL—TI
1 om®R

4
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rotor-blade tangential-force coefficient, positive in

Fxy
direction of rotation i__—_—__
\z ongPRY
: F
rotor Y-force coefficient I—__Xé—_
5 pPnQ R)'I'
¥g
roto;Jblade thrust-force coefficient j:];}?%?l
2

fuselage and wing drag

blade profile drag

mean blade drag angle, positive in direction of rotation and

measured between blade axis and line through rotor axis
of rotation and drag hinge (i.e., blade drag angle § is
t =Eg+Ejcos ¥+ FysinV+...)

coefficient of cosine term in expression for blade drag

ch

angle -

coefficient of sine term in expression for blade drag angle

component of rotor resultant force acting along X-axis

tangential component of the resultant air force on blade,

positive in direction of rotation
component of rotor resultant force acting along Y-axis
7 component of resultant air force on blade

acceleration due to gravity

mass moment of inertia of blade about flapping hinge

sin AO + Opg €0s AO

chs'sin.AO - Opc COS Ag
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’IV

e

kaO

g

Tl

- TB

t =

Tip chord

Co

mass moment of inertia of rotor about virtual axis of
rotation

mass moment of inertia of blade about drag hinge

blade-root spring constant (blade-root behding moment in
foot-pounds divided by anguler deflection in radians of
three-quarter-radius point from 4&g;)

fuselage and wing 1ift

rotor rolling moment

rotor pitching moment

rotor torque, negative in direction of rotation
radius of blade element c dr

radiﬁs of blade center of gravity

radius of inboard blade airfoil element

radius of flafping hinge

radius of blade tip
~ 1 (for linearly tapered blades)
rotor thrust, component of rotor resultant force along

Z-axis

component of resultant velocity at blade element that is
normal to blade axis

mean normal component of induced velocity at tip- path
plane (positive down and to rear)

velocity along flight path

Z component of induced veloc;ty at radius r and azimuth
angle V¥ (positive in plus Z-direction)

slope of longitudinal variation of nondimensional induced
velocity -

e r - A e —————— e e e e o e — e s
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gross weight plus down component of any acceleration force
acting on aircraft

nondimensional blade radius (r/R)

nondimensional radius outboard of which retreating blade is
stalled

nondimensional radius of inboard blade airfoil element

slope of lateral variation of nondimensional induced velocity

angle of attack of fuselage measured between flight-path
velocity vector and longitudinal fuselage axis

blade-element angle of attack measured from line of zero
1ift

.angle of attack of tip-path plane measured in the XZ-plane
betwveen flight-path velocity vector and tip-path plane,
positive below tip-path plane

blade flapping angle at azimuth angle V¥ (for tip-path plane,

By = 8g - ap cos 2¥ - bo sin 2¢ - . . .;
for plane of zero feathering,
B=28y-a) cos ¥ -Dby siny - ap cos 2¢¥ - by sin 2% - . . ,)
circulation of blade element at radius r and azimuth

angle ¥

constants in expression for I’ where I' = (FO + Pl sin W)x
value of ¢4, at c; =0

constant in power equation for cdq
(i.e., Cag = &g + ECZ2)

constants for first three terms of Fourier series expressing
relation between Cd, and o,

(i.e., Cip = €p + €1 sin ar + €p COS ap
or cd, = €1 sin ay + €p cos ar)

blade drag angle at azimuth angle vV, positive in direction
of rotation
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61

By

twist in zZero-1lift chord line between axis of rotation and
blade tip for blades with linear twist, positive for
increased angle at tip (i.e., 6f = 61x)

twist in rotor blade angle of zero 1ift between reference
station and radius r, positive for larger angle outboard

design helix angle at tip of blade for blades with helical
twist

pitch angle of blade element at radius r and azimuth
angle V¥ measured between zero-lift chord line and tip-
path plane, positive above tip-path plane

(AO + 64 - a3 sin ¥ + by cos W)

angular displacement of tip-path plane gbout X-axis from
horizontal

angular displacement of tip-path plane about Y-axis from
horizontal : :

infiow velocity ratio at center of tip-patb plane
(V sin ay - v)

QR
: . ] V cos oy
in-plane velocity ratio at tip-path plane ___5§___)

density of air

0

exB-L dx constants which express blade-chord distribution

1 1
i.e., 09 = — c dx
17 R
X1

1 .
O = JL-JF cx dx, etc.
7R X ‘




10 NACA TN 2656

n :
Opc = ﬂ_]ﬁf c cos Qt'xn"l dx '
X1

constants which express blade-chord and
blade-twist distribution

Q
Il

1 [ '
ns ——‘JF c sin 64xB-1 ax
R Jy
1

J

¢c angle between flight path and horizontsl, positive below
horizontal . .
¢v : inflow angle at blade element measured in plane perpen-

dicular to blade sxis and between tip-path plane and
relative wind, positive below tip-path plane

¥ . azimuth angle of hlade axis measured about Z-axis from X-axis
(This 'angle is very nearly but not identically equal to the
equivalent angle in plane of zero feathering.)

Wy rdtio of angular velocity of roll of tip-path plane about
X-axis to Q

Wy ratio of amgular velocity of pitch of tip-path plane about
Y-axis to Q

Q mean angular velocity of rotor blade axis about Z-axis

All angles are in radian measure.

ANALYSIS
Value of Normal Component of Induced Velocity at Radius r

and Azimuth Angle V¥

It is shown in reference 1 that for a lightly loaded single rotor
composed of a large number of blades b each having a circulation given
by the expression

r=T,+ Iy sin ¥ (1)
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the mean value of the normal component of the induced velocity is '

% 9ROy
v = - (2)

(1- 2u2n2+ 12

Equation (2) was derived on the assumption that the wake extended
to infinity and had the form of a straight elliptic cylinder. Thus, for
those flight conditions where a "vortex ring" type flow exists, equa-
tion (2) is not applicable and the value of v must, at present, be

obtained from experiment. The term (1 - % pvg) in the denominator of

equation (2) arises from the lateral dissymmetry in the blade circulation
that is required for rolling-moment equilibrium, and this term is the
only correction which the elementary theory meskes in Glauert's original
hypothesis that v = T/2pAV', where V' is the resultant velocity at

the center of the rotor.

If the distribution of the normal componeﬁt of the induced velocity
Vi over the tip-path plane is denoted by a power series in the non-

dimensional radius x and a Fourier series in the azimuth angle V¥ such
that for the first-order terms

%% = _é% + WX cog(¢ + yx sin ¥ * (3)

it can be shown from the results of reference 1 that

4 2 2
w x—g (l - l.8pv2)\F+ (%) - \K%) —Q% (L)

and

Y& By o (5)

For level flight and Hy > 0.15 the expression for y may be simplified
to

y & O (6)
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"It may be noted that for a pair of equally loaded, coaxial, counter-
rotating rotors, the values of w and ¥y are

W -% {l + (%)2 A {(:’;)2 Q‘Ir{ | (1)

and

y=0 (8)

Approximate Values of Rotor Blade Angles, Torque, and

X-Force and Y-Force Coefficients

It is convenient for preliminary calculations and checking and nec-
essary, in the general .case, for the determinstion of the angle of attack
and lateral tilt of the tip-path plane to have simple expressions of use-
ful accuracy for the rotor torque, X force, and Y force that are
independent of the rotor blade angles. One such set of equations which
take into account all the principal variables including the primary
effects of the reverse-flow region mey be obtained from a consideration
of the distribution of the blade circulation. It may be noted before
proceeding that the use of any radial blade-circulation distribution
other than the uniform value assumed in the derivation of the induced-
velocity equations will underestimate the induced torque. Thus, it is
theoretically incorrect to calculate the induced torque from blade-
element equations. However, for the extreme case of a triangular dis-
tribution of circulation along the radius and py = 0.5, the error in’

the induced torque is only 3§ percent and thus is probably within the

errors of present equations for the induced velocity.
For the present purposes a triangular distribution of blade circu-

lation along the radius and a sinusoidal variation with azimuth angle
is sufficilently accurate and will be used. Then

['=(ro + Iy sin¥)x - (9)
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Writing
‘ U cos @y = QR(x + py sin ) (10)
and . . '
U sin @y = QR[XV +‘yx sin ¥ + (wx - aguy)cos W] (12)
it follows for thrust and'rolling-momen£ equilibrium that
37QRECrp < L
' s ———————(1 - % py sin %)x (12)
(1 - py?) N 3 :

The reference blade angle Ap at r = 0.75R corresponding to the

average value of the circulation and inflow angle at this station and
a weighted chord may be obtained from the substitution’

2noy g = (€2)g q5g = 2(0/cU)g 7op

or
Ag = .srin‘:L Kbg3(iT- 2 1+ -19—6 hy® + % vt + 3%28 uv6>_J— tan‘1<% 7\,9
| (13)
where
cn.= ;Ll/?l cxB-1 gx | (14)
. R

For linearly tapered blades the values of opn may be obtained by
interpolation from table 1.
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The values of a; and b obtained from the differences in blade

circulation and inflow angle at T = 0.T5R for ¥ = n/2 and ¥ = 3n/2
for a3 and ¥ =0 and ¥ =n for by are

( Yy - 136' XV'“'V ’ BCTIJ"V
a) = Y + = (15)
<1 - 3 uv> 3nbo3 (1 - %—5 uy? + 2 u#f)
and
b1 = -+ aouy (16)

where the value of ag for blade root moment equilibrium on a blade
with the flapping hinge at the axis of rotation is approximately

3pﬂR5CT<L - g uv2>

Iy(1 - py2)
Similarly .
8anpve
ap = —2 T _ (28)
9 - 8uv2
and
bo =0 | (19)

The value of the blade-element profile-drag coefficient may be
represented with sufficient accuracy for the present purposes by two
terms in a power series in the blade-element 1ift coefficient c¢j; such

that

ca, = B + ecz2 (20)




NACA TN 2656 ) 15

where for conventional airfoils &p = 0.0080 and e x 0.0080. Making

the necessary substitutions and integrations the value of the rotor
torque coefficient is

CT(% yHy - M>
Cq =

1-uy2

+ %__‘baolich + %()w2 + HVE)UQ:' +

\»I T

<2cT>2 <1 * g uv2>b0h -

‘ + ACQqgs from equation (89b) (where appliceable)
73 (1 - Hv2)2

(21)

Similarly, neglecting blade-shank drag which is assumed to be included

in the helicopter parasite drag, the values of the X- and Y-force
coefficients are

Fx
CX = ll-
1,2
5 prdl“R
L 20\
Cp(2Mvity - y) - 3 EPMvI3 55
= + bdouyop - =— (22)
1-py® a-uplR.
and
_3
Fy Criv - 5 eouv
Cy = =
y - 5 (23)
% onsPRY Ty

The above equations based upon a triangular distribution of blade
circulation along the radius and a sinusoidal variation with azimuth
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angle are sufficiently accurate for preliminary calculations, checking,

and. the determination of the angle of attack and lateral tilt of the -

tip-path plane provided there are no large areas of the rotor outside .
the reverse-flow region that have blade elements operating in the stalled

or negative thrust range. This implies a reasonable blade twist for the

flight conditions.

Table 6 shows a comparison of the values of the parameters
calculated from the above circulation equations with the flight test
results of reference 2. )

Determination of Angle of Attack and Lateral Tilt

of Tip-Path Plane

Given the values of the flight-path velocity V, climb angle ¢c,

gross weight and vertical component of the inertia force W, fuselage
and wing drag, 1lift, moment characteristics, and position of center of
gravity, the fuselage angle of attack and thus the fuselage\and‘wing
lift Iy eand drag D can be obtained for the trim condition by
setting the summation of moments, acting on the fuselage and wing and
taken about the rotor hub, equal to zero. Since the lateral tilt of

the tip-path plane has a negligible effect, it follows from the geometry
of the above forces, as shown in figure 2, that

Dp cos ¢c - Lp sin ¢c + Fx cos ey

tan 6y = - (2k)

W - Lp cos ¢c - Dp sin ¢c + Fyx sin Gy

.

is a good approximation for unaccelerated flight. It may be noted that
Drp should include an allowance for rotor-hub and blade-shank drag. In

general, the terms involving Fx will have only a small effect on the
value of 6y and a sufficiently exact solution can be obtained on the

second iteration. Thus, as a first approximation,
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oy = ¢c + Gy (26)

Cp = (27)
‘ pﬁﬂthcos ey
V cos
py = (28)
_V sin ay v
-—-x (29)

The values of V/QR may be obtained from equation (2) or by double
interpolation from table T which includes the experimental values for
vertical descent from reference 3 and estimates of the values for the
inclined flight "vortex ring" states. The values of v, y, and Fy

can then be determined from equations (4), (5), and (22), and from these
second approximations to the values of By, ay,.and p, can be made

from equations (24), (26), and (28). If necessary, a mew value of Cp
maey then be obtained from the equation ‘

W - Lp cos B, - Dp sin §. + Fy sin 6y

i
anERhgos e

(30)
y

and thus the more exact value of "\, from equation (29).

For helicopter calculations the first approximation for Cp 1is
sufficiently accurate, and if pu, dis small (i.e., My < 0.15) the effect
of Fy, on ay may be neglected for level flight.-

v v e e — . ™
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The tall-rotor thrust Tp required for a helicopter with a single
main rotor is

TT = Q/l (31)

where 1 is the perpendicular distance between axis of main and tail
rotors and the value of Cq may be obtained from equation (21). The

lateral tilt 6y of the tip-path plane for a single-rotor aircraft in
unaccelerated flight is thus

..]:. + C B.
: Cy Q
o 22 -1 (32)

vhere Cy is given by equation (23).

Application of Two-Dimensional Airfoil Theory and Data
to Rotor-Blade-Element Calculations

Two-dimensional thin-alirfoil theory demonstrates that

S

c; = a sina (33)

For a two-dimensional cascade of airfoils, equation (33) is modified
by a multiplying function of the solidity, chord spacing, and blade angles
that is very nearly unity for average lifting-rotor configurations as
shovn in reference 4. Thus, within the approximation that the radial
components of flow may be neglected, equation (33) should be applicable
for blade-element rotor theory over the unstalled range of blade-element
angles of attack. Beyond the stall, equation (33) is somewhat less in
etror than the usual relation c; = aac as can be seen from figure 3

which 1s a plot of the above expressions and the experimental values of
c; against « for an NACA 0015 airfoil. The use of equation (33),

rather than the usual approximastion that cy = aa, allows the thrust and

tangential components of 1ift on a blade element to be exactly expressed,
within the approximations involved in neglecting radial components of

the flow, in terms of the easily integrated in-plane and normal components
of the velocity at the blade element U cos §, and U sin §,. Thus the

usual approximation that the inflow angle ¢v is a small angle may be
eliminated. This may be demonstrated as follows:
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Omitting the negligible component of the profile drag, the thrust 47T
on a blade element c dr 1is

ar = % pU2ccz cos ¢v dr (3%)

or since

c; =& sina, = a(sin 6, cos ¢v + cos 6, sin ¢v) (35)

ar = %-pac(U cos ¢v)[}in BV(U cos ¢v) + cos GV(U sin ¢vi] ar (36)

The tangential component of the 1ift on a blade element mey be similarly
expressed as

dL, sin @, = pac(U sin @ )[%in 6 (U cos ¢ ) + cos 6 (U sin @ :] dr (37)

The value of the slope of the 1ift curve a of the blade-element air-
foil in the above relations may be taken as the value corresponding to
the Reynolds number, Mach number, and surface roughness existing at the
three-quarter-radius point of the rotor blades under consideration. For
the usual tip speeds, in the 500-foot-per-second range, the Prandtl-
Glauvert Mach number correction :

a=—=2— (38)

where

a' low Mach number lift-curve slope from two-dimensional
wind-tunnel tests

M free-stream Mach number at three-quarter blade

radius
may be used to correct the lift-curve slope from low Mach number data.

The values of 4, obtained from two-dimensional wind-tunnel tests
at appropriate Reynolds numbers and model surface rbughness should be
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directly applicable to rotor-blade-element calculations in the unstalled ~
range of angles of attack below the Mach numbers and angles of attack

for drag divergence, since the effect of subsonic Mach number on profile

drag is negligible as shown in reference 5. However, it should be noted

that the profile-drag coefficient is only constant with change of sub-

sonic Mach number if it is taken as & function of the 1ift coefficient.

If the airfoil section data are plotted against section angle of attack

and.the Prandtl-Glauert correction is applied to the lift-curve slope,

this is equivalent to multiplying the section-angle-of-attack scale by

(1 - MQ)l 2. Consequently, the section-angle-of-attack scale on the

- ’ 2
profile-drag curve must be multiplied by (1 - Me)l/ to retain the
same relation between cd4, and c3.

In view of the errors in the magnitude and distribution of the blade
circulation that arise from the necessary neglect of blade deflections,
and so forth, it is probably not justifiable to take into account sec-
ondary effects of the profile drag. Thus, expressing the relation between
the profile-drag coefficient and the blade-element angle of attack by the
first three terms of a Fourier series gives -

Ca, = €9 + €1 sin o, + €5 cos o (39)

The constants in the above equation may be evaluated from the two-
dimensional wind-tunnel data for the blade airfoil at, say, a = 0°, 59,
and 10°. The advantages of equation (39) over the usual expression

Cdo = 80 + 81(11. + 62(11.2

are: The last two terms of equation (39) can be exactly expressed in
the known velocity components U cos ¢v end U sin ¢v; the resulting

expressions for the forces and moments on the blade are considerably

. simplified by the absence of the squared term in ap; and it is an

equally accurate approximation to the experimental values of C3, as

may be seen from figure 4. However, in using equation (39) it may be ,
noted that the calculated value of Cd, is the small difference between

large quantities and thus the values of €g, €7, and €5 should be
determined to four places in order to obtain the value of Cd, to the

customary accuracy. For the more severe convertaplane flight conditions
vhere the inflow velocity is large (Ik@[ > 0.10) a certain error arises

in the treatment of the €o terms, and it is necessary to fall back on
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the two-term approximation for Cdgs Cdo = €7 sin a, + €p COS a.,
vhere €7 eand €, are evaluated from the experimental data at, say,

a=2° and a = 7°. This additional approximation is permissible for
these flight conditions, since the relative effects of the profile drag
become less important as the inflow velocities and rotor blade angles
increase, For example, in propeller calculations the single-point
approximation cg = €c; is usually used. '

It follows from the geometry and equations (35) and (39) that the
tangential component of the profile drag on a blade element.may be
expressed as

dD, cos @, = % pc(U cos ¢v){€OU +

’

elgU cos ¢v) sin 6, + (U sin ¢v) cos GV_—J +

€ [KU.cos g,) cos 6, - (U sin $,) sin GVTJ} ar (ko)

Thrust of a Blade at Azimuth Angle V

‘The thrust F, of a blade at azimuth angle V¥ 1is

R , : ‘
Fy, = %- pa frl c(U cos ¢V)|—_(U cos ¢v) sin 6, + (U-sin ¢v) cos G‘Zl dr

, (k1)
where rl is the radius of the inboard blade airfoll element. In the

general case it follows from the geometry that
U cos @y = QR(x + py sin ¥) : (42)
and

Usin¢v=QRE.v.+(wx+ x—aouv) cos.¢+(y/-.a)x)xsin\lf+

2box cos 2Y - Zag'x\sin EIII:I T : (43)

e MMy N T T P S e, ———— o 4 s e
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where

Wy ratio of angular velocity of roll of tip-path plane about
X-axis to Q )

0y ratio of angular velocity of pitch of tip-path plane about

Y-axis to @

Neglecting the higher harmonics of the cyclic pitch that may arise from
control-system linkages, the pitch angle 6, of a blade element at

radius r and aximuth angle 1V, measured with respect to the tip-path

plane, is
t
6y = Ag + 6 - a3 sin ¥ + by cos ¥ (k) ;
where !
Ag mean blade pitch angle at reference station !
Ot twist in rotor blade angle of zero 1ift between reference
station and radius r
ay minus the coefficient of sine component of blade cyclic- \
pitch angle measured with respect to tip-path plane
by coefficieht of cosine component of cyclic-pitch angle

measured with respect to tip-path plane

- In the genmeral case (i.e., for the convertaplene) A, and 6

mey not be small angles. However, it appears that the magnitude of the
cyclic-pitch angle will always be limited by tip stall on the retreating
blade to the range where it is a good epproximation that

sin (-al sin ¥ + by cos W) = -a; sin ¥ + by cos ¥ (45)
and

cos (—al sin ¥ + by cos W) =1 (46)
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It follows from equation (44), upon expanding the functions sin 6,
and cos 6, that

sin 6y = l:sin Ag + @os A@(—-al sin ¥ + by cos w):l cos 6 +
E:os A - éin A@(—al sin ¥ + by cos w):l sin‘ 64 ()A-l-"()
cos Oy = [cos Ay - éin A@(—-al sin ¥ + by cos 1];)] cos 6y -

Eain Ag + @os AO)(‘al sin ¥ + by cos q:)] sin 6y (48)

Substituting the values of U cos @y, U sin @,, sin 6, and cos 8,
from equations (42), (43), (47), and (48) in equation (41), defining

COS 91: dx ' (49)

P
[¢]

[
élw

g
B~

f cxPLsin op dx (50)
X7

—
I

nc = Opc 8in Ag + 0,5 cos Ag (51)

Ins = Opg sin Ag - ope cos Ag (52)

multiplying out the terms, and reducing the functions of V¥ to

F
harmonic form give for the thrust coefficient C, = —2% __ of one

% pn?RM

blade at an azimuth angle V¥ the expression of equation (53):



Ogfe = Bquation (53)
T30 Iz¢ I1e I3y Iog I1a
1 ) ajuy - Ay -
N 1+ % a(y - @) - E:EBO + ag)byiy - %(Bl% . "v)uv %(3132 + Bybo)(w + @y) + %( - ax)uy -
B (v« ay) B erbay Blewve - o20)(r - ®) | s e
(2 - agapg)uy *+ a1y +
a v - ' a1bo = apby A, +
8in ¥ ::bl T mi) ‘ g oy - exuy - £ ogbyny® 8 - (v - ay) ( ;u 2) &alﬂv - ‘\v)uv
ay - ¥+ .
1 £ o1(v + ag)uy d
-32(31 -y 4+ cnx) - obaity - Patv ¢ | (EO + ae)“v +
ay(vw + - - 2 R -4 vypy®
T vl v e ) g el v oy e b (a2 + Dibo)hy e
oy - @iy
-% al(w + cny) - _(% ag + aE)“llLv + 285 + alae(y - ‘Dx) - (’0“2 - l)bl“'v - 1 .
in 2v -2 bydpily Agiy
. b oav - o) 2agh, 2 by (v + ay) 3 + @y :
- - - b, + a.b - =-2bs - 8¢b - - bibolp,, +
oo 2% oy - m) (B oL+ sy 2)% Bazy + )ity by - eybp(y - @) + 1(51 + 80P bo)u .
% by (v + oy) N byba(w + @y) T - wey
—% al(y '.mx)“v - 2 ) 2
sin 3V Baby ey - 8
o+ @)y koo bea
-&aqv + * - .
cos 3 % 1( “‘.y)“v i: “0“1]172 % t’l"“,r2

%b]_(l' - mx)l-'-v

n
=

9¢92 NI VOVN
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Equation (53) is written in tabular form where the coefficients in the
boxes must be multiplied by row and column heads. Values of opc and

Ops -May be obtained by interpolation from tables 2 and 3 for linearly
tapered and twisted blades, where

c =co(l +tx) from x =0.15 to x =1 (54)
CO . y
gg = — 6
0= 3 : (56)
and
o extended blade-root chord at r = O
£ = Tip chord -1
Co
61 twlst in angle of blade zero 1lift between axis of rotation
and tip . ’

In order to use the tabulated values of o,. and O,g for blades with
linear twist and taper, it is necessary to take the reference blade

pitch angle Ay at the extended blade-root chord cc 8t r=x=0.

The use of the lower limit x; = 0.15 in the computations for the

blades having linear taper and twist corresponds to present practice
and largely eliminates the necessity of making any reverse-flow correc-
tion to the blade thrust. The reverse-flow effects are discussed in the
following section. )

Additional tables (tables 4 and 5) give the values of Ope @nd op

for blades having linear taper from X7 =0.20 to x =1 and helical
twist where

]

6y = tan‘l<fffefg> : (57)

X
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and 6p 1is the design helix angle at x = 1. In this case, the refer-
ence station for Ay 1is taken at the blade tip. The tables for helical
twist are included for convertaplane usage since helical twist would
appear to be desirable for a reasonable propeller efficiency. An inner
limit of x; = 0.20 was used for the computation of the values of

Ope and opg for this case of helical twist in order to minimize the
severe root stall likely to occur under some convertaplane flight con-
ditions. It might be pointed out that helical twist would also appear
to afford an increase in helicopter-rotor performance over that obtain-
able with linear twist.

Reverse-Flow Considerations

For normal helicopter and convertaplane flight conditions wvhere
there is a downflow through the rotor and ¢v is negative over the

reverse-flow region, the maximum value of p, is limited for conven-

tional rotors to relatively low values of the order of 0.30 by tip stall
on the retreating blades, Under these conditions the portion of the
retreating blade extending inboard from the outer edge of the reverse-
flow region at x = -p, sin ¥, where the in-plane component of velocity

is zero, to x = Xy, where the blade airfoil section ends, has a neg-

ligible thrust loading because the in-plane components of velocity are
very small. The present equations take into account the fact that the
blade airfoil does not exist inboard of x = xj7, for which region the
the in-plane components of velocity are larger, within the reverse-flow
circle, and previous equations erred in assuming the blade airfoil to
exist. -

. For those flight conditions where there is an upflow through the
rotor and the tip-stall limitations on Ky are relaxed, the present

equations give the proper direction to the blade-element thrust for
those blade elements within the reverse-flow region and inside the radius
where ¢v x 20,.

Thus, for all practical purpases, it is not necessary to use reverse-
flow corrections when applying the present equations to conventional rotors.

For unconventional rotors operating with net downflow at large values
of py it would appear from strip analysis to be desirable and even nec-

essary to minimize the forces in the reverse-flow region by using a suf-

ficiently large design value of x;, for example, xq >'%’”Vmax‘ In
this case less error is introduced by taeking into account the inboard
blade airfoil limit and omitting the usual reverse-flow correction than
vice versa.
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Mean Rotor Thrust

Omitting the coefficients of the second-harmonic flapping angle
which have a negligible effect on the mean rotor thrust, the value of
the mean rotor thrust coefficient obtained from the first row of equa-
tion (53) by averaging the value of Cyz/a over the interval from
¥=0 to ¥ =2r is glven by

2Cr 1 - 1 1
ET)— = EL + § al(y - (Dx) - -é' bl(W + (Dy-)]I3c + E aobll.].vlzc +

2(erry + my)iyTie - E‘v - ey + (7 - ‘Dx)“w] Tog (58)

Mean Rotor Air Rolling Moment

The value of the mean rotor air-rolling-moment coefficient about
the X-axis

C.. = .__jﬁi___
mx
% pn92R5

is found, upon Iintegration, to be obtained by multiplying the second row

of equation (53) by %-b and introducing the moment arm by writing the

subscripts of Ipc and Ipng to one higher order. Thus,

2C
I - l:euv + Ak, + % a1 (v - @g)uy - %?’1(‘* + my)uw]%c +

—

L agbiy Tpe + (21 - ¥ + ax)Tyg * (13; aluy - Xv)uvlgs (59)

Mean Rotor Air Pitching Moment

Similarly, the mean rotor air-pitching-moment coefficient

T S
my % pn92R5
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obtained from the third row of equation (53) is
oy _ [y, 1 + + 31y Yoy |T
ab l)“V"JJ:al(W @y)y G PV - ey iz *
1 o ) 1 2
7 2081vTToe + (b1 + v + @y)Tig - BonyI3s + T Py Tos (60)

Mean Blade-Root Air Moment

The coefficient Cp, of the blade-root air moment M, is merely

the first row of equation (53) with the I factors to one higher sub-
script. Thus, for -

Mo

C = —
% p:rﬂzR5

mo

E_nig = E_ + .]2_‘ al(y - ‘Dx) - %bl(w + “’yﬂ Iy * % aobll"'vI3c +

%(alkv+ llv)“vlzc - l}v - ajpy + %(Y - U&)u;‘ I3g (61)

Equilibrium Values of Mean Rotor Pitching Moment
and Rolling Moment \

If an external moment M; is applied to a single rotor with three
or more blades sbout a diameter, axis 1, the differential equations of
motion about axis 1 at ¥ =¥7 and axis 2 at ¥ =V + 90° can be shown

by the use of Euler's equations to be

+'nu>2+]f%i"i=? ~ (62)
v A’

-
#.8
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and

v |

de Quy + ket _ 0 (63)
at I,

where ®; and wp are the angular vélocities of the tip-path plane
about axes 1 and 2, respectively, kyw; and kow, are the damping
moments, and I, 1is the mass moment of inertia of the-Totor about the

virtual axis of rotation. The general solution of equations (62)
and (63) is a pair of equations of the form

ki -k ki - k -
O op o = A sinqh-ﬂz - (—1‘———2> t + B cothﬂ? - <1—2> tle Iy

(64)

In the actual case, damping of the nutation appears to be very rapid
for an articulated rotor. Also, for pilot-controlled motion, ko = 0.

For example, for a constant control moment M;, kp = O, and kq = 20T,
which 1s then the value of k3 for critical damping, it follows that

a = EMlt e'eﬂt (65)
IV .
or
My -20t ‘
a? = Ivﬂ].- e ) | (66)

It can be seen from equations (65) and (66) that the transients decay
very rapidly and their effects can be neglected in most problems. There-
fore, to a good approximation for a single rotor

M, = Ivgga)y + Mp (67)

My = -Ty0foy +lMyf | - (68)
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-where M,p and Myf are any moments transmitted about the X- and Y-axes
from the fuselage to the rotor. For steady straight and level flight

@y = @y =0 * (69)
For steady banked turns the value pf Cp can be taken proportional to

sec 6x. Also

- ;g sin 6y tan 6y

oy R (70)

va
and
g sin 6x tan 64 .
= ' 1
wy o (71)

where 6Oy 1s the equilibrium lateral-tilt anglie of the tip-path plane
(epproximately equal to equilibrium angle of bank, positive for turnms
in direction of rotor rotation).

For any curvature of the flight path, the nondimensional compon-
ents wy and Wy of the spatial angular velocity of the aircraft may

be calculated and, consequently, the approximate equilibrium values of
My and My can be obtained from equations (67) and (68).

Approximate Solution for Equilibrium Values of Mean Reference
Blade Angle A,, Lateral and Longitudinal Componénts of
Cyclic Pitch aj; and bj, and Coning Angle ag

An approximeste solution of the set of four nonlineer, transcendental
equations (58), (59), (60), and (61) for the four unknowns Ay, -a1, &g,
and by that is sufficiently accurate for most steady-flight helicopter
work and useful as a first trial for steady-flight convertaplane calcula-
tions may be obtained as follows: Setting the small terms and wyx, wy,
and Cpy equal to zero and cos Ag = 1 in equations (58) and (59) and
eliminating a; gives

(é%ll - 035 - >"v°2c)(01+c + % m o - 7\vf’3s) + uyPopc (2035 + Xy0pc)

(72)
(U3c + % “'v2°1c e lvc2s)(°ll-c + ‘13,_' u1/2‘7"2c - A"."3313) - 211v202003c

sin Ag =
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Then, from equation (59) for wy = wy = Cyy = O

2p —yIA - Ag I
ap = - vI3c 4s 128 (73)

(A'V * % y“v)I3c + Iyg + )_% ”VEIEB

Iet Eb be the design coning angle for the general case of semirigid
blades (i.e., coning angle for zero blade-root bending moment). Iet
kao be the spring constant of the blade for angular deflections of the

three-quarter-radius point from Eb. Then setting the summation of

moments about the blade root equal to zero and solving for ag, the
coning angle wt the three-quarter-radius point, .

N % p“aﬂzﬁ5 [Ihc * %(al)“v + iy )iyloe - ()‘v - all-‘v)I3s] + Eokao - Mprg

ao >
I,0° + kao
(74)
where
Mp mass of blade
T radius of blade center of gravity
Il mass moment of Inertia of blade about flapping hinge

(or root)

If the blades have a flapping hinge at the axis of rotation ﬁb = kao = 0.

If the flaepping hinge is located at radius rg from the axis of rotation,
2
I'B'.E‘MBQ
1- (rB/O.75R)
equation (60) that for

Eb = 0 and kao ~ .| Then, knowing a,, it follows from

“x = @y = Cpy = 0

Boiylzg = Wiy
Alge + Iyg + % uv212s

bl ~ (75)

. - . e e e e e e - ——hAs e e o
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For those steady, unaccelerated flight cqnditions where cos Ag x~ 1, the

above solutions are sufficiently accurate and may be used to calculate
the blade loadings and rotor torque, X <force, and Y force.

"Exact" Solution for A,, a3, and by for Accelerated Flight
Conditions and Those Flight Conditions where cos Ag, £1

A reasonably rapid and sufficiently accurate solution of the "exact"
equilibrium equations given by the first three rows of equation (53) can
be obtained by using an aspproximate value for the coning angle ag such

as that given by equation (17) or (Th).

] Then for the approximate value of Ay given by equation (72) and,

for example, two other values several degrees successively smaller, the
"exact" corresponding values of aj; and by can be determined by
rewriting the equilibrium equations for the rotor pitching and rolling
moments in the form

. 2C
hay + Boy = P - — '
and (76)
- 2me
Cay + Dbl =R + s
where
T+ o)uyTse - T agnPla (77)
B = -Ad3e - (y - mX)“V'I3c = Iyg - )+ “v212s (78)
C = Al3e + E(y.‘ Wg)byI3e + Iyg + 3 Pvgles (19)
D= - (v + oIy, + I 20Tz (80)
P = (w + aﬁ)lhs - aghyIzg (81)

R= -2 T3+ (¥ - o) Tug F AuyTps (82)
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Then

and

33
<P - E—le) B
ab
(3 + 2§§x) D
ay] = (83)
A ‘B .
C D
A P - 2cmy)
ab
’ C (3 + 22§f>
by = \ (8%)
A B
C D .

Having computed the values of ay and by for each of the assumed

values of AO, the corresponding values of Cp may be\found from the

equation for the thrust equilibrium where

Then plotting the values of 2Cy[ab,

2Cqp ’

> - T3¢ T 5 My T1c -

1

2

XVIQS

( - “&)UVI2S +

nJH-

1 1
[5(3’ - @) I3¢ * 5 MpyIic + “vlee] a) +

L eonvTae - 27 + 0y)13c|m (85)

aj, and by against the trial values

of Ay, the "exact" value of Ay, and thus a; and b, may be obtained
from the plot at the design or desired value of Crp.
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In-Plane Component of Force ny on a Blade

at Azimuth Angle V¥

The in-plane component of force in the direction of rotation F

Xy
on a blade at azimuth angle V¥ 1is from equations (37) and (L4O)

Fyy = % pab/;j c(U sin ¢v)[%in GV(U cos ¢v) + cos OV(U sin ¢Vi] dr -
% pLj c(u cos ¢v) {EOU + el[sin GV(U cos ¢v) +
cos GV(U sin ¢v):l + EEE:OS BV(U cos ¢V) - sin GV(U sin ¢Vﬂ}dr
. (86)
where

cdo=eo+elsinar+ €5 COS @,

Then, by (1) substituting the previously evaluated expressions for

Ucos By, Usin@,, sin 6,, and cos 8, given by equations (42), (43),
(47), and (48); (2) neglecting the effects of second-harmonic flapping;
and (3) writing (eqU)(U cos ¢y) as eo(U cos @)2(U/U cos §,) and

expanding
U U sin §,\?
—_—_—— = 1+ ——
U cos @, U cos @,

by the binomial theorem and dropping third and higher terms, the expres-
sion for the constant and first-hermonic terms becomes

. ‘
Cxy = %?X‘LmQQRE = (ACXY)a - (Acxy)eo - (ACXY)E]_ - (Any)EE (87)
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e
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Rotor Torgue

The effects of tip stall at the higher values of py and Crp/o3
on Cq are large and may be approximately evaluated for high-speed

flight where Ay 1s negative, as follows: The retreating blade will
be stalled outboard of the nondimensional radius (for Av. negative)

C
kv+uvtan£llgax-Ao-al-A6t>f

c
l
y + t&n( zax - Ay - a3 - Aﬂt)

Xg

(89a)

where A8+ 1is the aerodynamic blade twist between the reference station
and the tip. Assuming a jump of 0.08 in the value of cg, at the stall
and that the rotor area within which blade stall exists is a' segment of

minimum radius x5 and symmetric about V¥ = 3%/2, the increment ACQg
to Cq due to tip stall is approximately

b
8gg % 1 - w)2(1 - xa) VI - 12 (89v)

7T
3

(If xg <pvy or xg>1 equation (89b) is not applicable and

ACQ = 0.) Then
8

2%

= = -(Constant terms of Cxy with subscripts n on op, Ipe, and

I, increased to n + 1) + —=

(_90a)

For steady-state calculations equation (90a) may be reduced to

U SRR R R L S RS -
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1
OCmf = -
20£ _ T(2 YHy XV) + %CQS +
b b(1 - 1y?) b

€g [(1 + i;we) o) - % agWkyo3 + %().,VQ + “vz)cgj_\ +

€1[Tuc * £ obiivise * Zlbv + sah)uvIec + (swbv - )T36] +

€2 l:(al”v - XV)I3C - (1 - %bl"’>1hs - %‘ agbikvI3e -
., .
5 @1y + Pv)“vlzs:, (90v)

Rotor X Force

The value of the rotor X-force coefficient Cyx 1is

2c
- -(sine terms of cxy> (91)
Bowever, the greater part of Cx arising from the lateral variation in

blade circulation is a small difference between large quantities which
are principally functions of a3 and Agp. It follows that this part of

Cx 1s more accurately obtained from the circulation equations than from
the blade-element equations. ' Thus for steady-state solutions

2Cx 2Cr(2:viy - )
b b(1 - pv?)

+ €g(2uy + yhy)op +
elBallv + 2uy)Ipe + (8 - ¥)Izs + (% alMy - xv>uv11;| +
‘52[(&1 - ¥)I3c + (% ajby - lv)uvllc - (2uy + alkv)IQE;I (92)

Rotor Y Force

The velue of the rotor Y-force coefficient is

2C .
-—b—z = Cosine terms of Cxy ' (93)
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As 1n the expression for Cx +the above value of Cy given by the blade-

element equation is a small difference between largelquantities and the
result for steady-state flight 1s more accurately obtained from the
circulation expression

o, ol - 3 eon) (9k)
n

y - 2

Second-Harmonic Flapping

Again letting kg, be the spring constant relating the blade-root

bending moment in foot-pounds to the angular deflection in radians of the
three-quarter-radius point of the blades from the unstressed position,

it follows that the magnitude of the cosine component of the second
harmonic of the blade flapping angle is

~ J + KL
22 % Ty ’ (95)
Similarly the magnitude of the sine component is
L +JM ’
bo & 2 —2 6
2% I , (96)
where
J (terms not involving b, 1n the cos 2¢ row of thrust equa-
tion (53) with the I factors changed to ome higher sub-
-%- pth2R5a
scripg X | ——eemeeee—
) 31192 - kag
K (coefficients of b, in the cos 2y row of thrust equa-
tion (53) with the I factors changed to one higher
% pItQQRE’a.
subscript) X | ————
31192 - kg
L (terms not involving ap, in the sin 2¥ row of thrust
equation (53) with the I factors.changed to one higher
L o2R%a

subscript) X ——2————
3I10° - kap

e e meam - A B cam = A A st i s T w2 o s e i i e 3 . e . Tt g e 77 e i e = we = e L aw s
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M (coeffic_ients of ap in the sin 2y row of thrust
equation (53) with the I factors changed to one higher
L pnﬂ235a -

subscript) X —2——?——
31,9 - Kap/,

For steady-state flight conditions where w, = Wy = 0 the expres-
sions for the factors J, X, L, and M may be simplified to ‘

L p:taQ
- -1 '
5:-132———[ Sty + wy)ivTac (al 2V)“vl3s] (97)
1 255
= pra“R
K=~ _2%_—(—21)_]_3) \ (98)
31792 - ke
1 2p5 '
= praQ R
~ 2 1 1 1 2
L= _T_—E > blxvpvlgc - (bl + > W)IJVIBS + > 8ok Izs:l (99)
31,87 - kao .
1 2p5
praf
Mz 2 (o1, ) (100)
31,0 - kg

and I; is the mass moment of inertis of the blade about the flapping
hinge. '

Tt mey be noted that kab = 0 for blades having a flapping hinge

at the axi:s of rotation., If the flapping hinge is located at radius rg -
then

: rB—fMBQ2
0% T g
0.75R
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Amplitude bf»Constant and First-Harmonic Components of
Lag Angles in Unaccelerated Flight

Por an articulated rotor having lag hinges normal to the plane of

‘rotation and located at & small radius e the equilibrium blade lag

angle EO is

1 5 -
pxR )
Ep = 2 S ‘Z—E%Q- from equation (902} (101)
Mge ( - _O.7R)

where Mg is the mass moment of the blade about the lag hinge.

Similerly the coefficients of the cosine and sine components of the
lag angle are

1
L onRPEp - 2anbq.T
E, ~ 2 g #0°1s~¢ (102)
Mge - I§
and
1
= prROF, + 2anaq.T
- S . (103)

Mge - I§

vhere a,. and b, are the cos ¥ and sin ¥ components of the angle

between the tip-path plane and the hub plane., For unaccelerated flight
the values of a1g and bls are approximately

alg R, - O - (10%)
big = O4p - Oy (105)

where 6xf is the equilibrium lateral tilt of the fuselage.
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k2o
Also
IQ mass moment of inertia of a blade about lag hinge
E¢ _ coefficient of cos ¥ in equetion (88) for Cyy Wwith sub-
scripts of I factors changed from n to n + 1; approxi-
mate value from circulation equations is
(3 .
2Cp N W - aghy
Et = (106)
b(1 - 1uy2)
Fe coefficient of sin ¥ in equation (88) for Cyy with sub-

scripts of I factors changed from n to n + 1; approxi-
mate value from circulation equations is

2Cp (% y - — Xv#v) 0°085CT2“v°h
= - 0.008(2}1v + ykv)c3 +
b(1 - py2) b2032(1 - p,2)2

(107)

Thrust Unbalance

Two-bladed rotor.- The second-harmonic variagtion in C‘I' for a two-
bladed rotor is

AC
TT = Fourth + fifth rows of equation (53) (108)

For wy = wy = 0 and steady-state conditions, the equation for the
amplitude may be simplified to

s 1 1 2. |°
=~ 282:[35 - (bl + 5 W)U'VIES + ) aouv IlS +

51 1/2 \
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Three-bladed rotor.- The third-harmonic variation in Cp for a
three-bladed rotor is approximately

2/

x Sixth + seventh rows of equation (53) (110)
3a '

or for wy = wy = 0 the amplitude is apprbximately

1/2
(822 + 12) 7 21y (111)

w
o
=

An Independence-of-Blade-Element Analysis for Hovering,
Vertical Ascent, and Convertaplane Propeller Condition

The use of the relation c¢; = a sin a permits & considerable
' simplification of the equations resulting from the assumption of the
independence of blade elements. As the exact propeller solutions of
Betz, Goldstein, and Theodorsen are not appliceble to a 1ifting rotor
at zero or small advance ratios, a simple analysis of the independence
of blade elements may be useful.

From momentum considerations the thrust dT' on an annulus of the
rotor disk 2mxr dr is related to the induced velocity V3 at the rotor

element by the expression

ar .
— % -V
o 1(Vi + V sin cz.v) 4 (112)
But
Vi + V sin a, = U sin §, (113)
Thus
I,;i% = (U sin ¢,) (v sin g, - V sin a.v) (114)

—— o o+ e 4 o e —————— e o . o e T A . | e




Ll

The thrust of the annulus is also eﬁual to the thrust acting on the

NACA TN 2656

portions of the blades within the annulus which is

ar =

Where

L

2

~

przch cos ¢v dr

c; = a sin ap = a(sin 8, cos ¢v + cos 6, sin ¢V)

Thus

(115)

(116)

ar = L 0ab(U cos g,) E,m 6,(U cos §,) + cos 6,(U sin ¢v§] cdr (117)

Substituting the above values of dT in equation (114) and solving for

U sin ¢v
U sin @, (Va abo,. )
—_— . = — cOos Gv -
QR 2 16
vy,~ abo 2 abo
J(7§ + l6r cos ev) + BI'x,sin 8,
Wwhere N
V sin Ay,
Ya T ToR
_c
0, = E

Then from equation (117)

e x sin 6 +(Usm¢v>cose o.x dx
ab /;1 v QR v} or®

(118)

(119)

(120)

(121)
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U sin ¢v i .
where the value of ———55—4— at x is given by equation (118).

Similarly, from blade-element considerations

2Cq 1y gin gy (U sin ¢v> i]
= = -a\/p (——Tﬁf_—> b's sig Ov + —aE cos Gv opx dx +

| Xl
L ocqo U sin g\ °
v 2
J£ 5Tn op | X 5in Oy + ( & ) cos e;]er ax (122)
c CdO cd-O
where the values of EIETE; are obtained from a plot of —T—ji; -against

ar for the blade airfoil at values of ar given by the relation

ap. = Gv + tw;1EWH (123)

If it is necessary to take into account the rotation of the slip-
stream for large rates of vertical ascent or the propeller condition,
this may be accomplished to a first approximstion by using an effec-
tive Q, Q., in every case where

, 9e=9(1-7]iCT) A ' (124)

The geometry of the above equations.is exact and they are convenient
for graphical or numerical integration on account of the repetition of
factors. R

Neglecting the induced raaial and tangential velocity components,
the optimum blade-angle distribution for minimum induced power and a

"given blade-chord distribution and nondimensiona% axial flight-path
v

U sin

velocity vg may be obtained/by setting R

equal to the constant
value hv giving '




46 NACA TN 2656

sin 6, = XV(XV ) va)x 1+ \|1+ (Xva - Xz)[%z _ (Kv _ Vé)%] (125)
v k(kv2 + x2) (XV - va)2x2
where
k = aﬁ;f’ (126)
and
v vg\2
A \J(?) * 30 (227)

The optimum chord distribution for a given desired constant value of ¢y
along the blade and the same restrictions is

8 -v
op = XV(XV a) (128)
bcz\lxv2 + x2
For this optimm chord distribution, the optimum distribution of 6
reduces to
' 2y 2 2(, 2 , 2
Xc a - cC + X
sin 6, = L N ' 120 ) (129)

—_— |1
a“xve + x2 czzx2

For calculations where the flight-path velocity end equilibrium
value of Cp are known or can be estimated, the following procedure

may be followed:
(1) Calculate and plot the radial distribution of O
(2) Calculate the effective value of Cp and vy Where
- ooV
s - ol

= Q
e Qe

&
m
}
<
1]
P
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(3) Calculate the approximate value of Ay from equation (T72)
which for these flight conditions reduces to

(%gge - 035 - Xv°2c>

(030 - XVUQS)

sin AO x

(4) Calculate and plot the radial distribution of 6y = Ay + 6¢
for the value of Ay obtained under item (3) and two lower values at
increments of several degrees ‘

(5) Calculate and plot the radial distribution of U sin ¢v/beR

for the above distribution of 6, from equation (118) using Q = Q¢
throughout ’

(6) Calculate and plot the radial distribution of the integrand
of equation (121) for the three values of. Ag and graphically or

numerically integrate for the values of ECTe/ab corresponding to the
three values of A,

(7) Obtain the correct, value of A, from a plot of CTe against Ao

. |
(8) Calculate and plot the radial distribution of the integrand of
equation (122) for the three values of Ay and graphically or numerically

integrate for the values of QCQe/b corresponding to the three values
of Ap

(9) Obtain thé equilibrium value of CQe "at the equilibrium value
of Ap from a plot of CQe against Ag

2
(10) Calculate the equilibrium value of Cq = CQe(%%)

Comparison of Experimental and Calculated Values of Parameters

Table 6 shows a comparison of the experimental data of reference 2
for those runs where Cp % 0.00545 with the values calculated by the

approximate blade-element equations of this report. The blade-element
lift-curve slope was assumed by the authors to have been a = 6.5 from
the experimental results of reference 6. The values of €0> €71
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and €p were evaluated for the points cg, = 0.0090, 0.0105, and 0.0170
at ¢y =0, 0.5, and 1.0, respectively, from figure 19 of reference 6.

The exact solutions for the various parameters differ from the
tabulated approximate solutions by a negligible amount for these heli-
copter flight conditions. .

A -consideration of the results presented in table 6 would
indicate that much of the remaining discrepaency between experimental
and calculated blade angles and torque coefficients may be due to the
neglect, in the present calculations, of the effects of the rotor induced
velocity on the 1ift and drag of the fuselage.

It mey be noted that the longitudinal component of the angle
C
tan’1<§5—) between the rotor resultant force and the thrust component

pormal to the tip-path plane is very small for all these helicopter
flight conditions and thet the direction of the resultent is inclined
forward for those flight conditions where there is a net downflow through
the rotor. The inclinations of the tip-peth plane to the horizontal 64
and 6y are also small angles and, consequently, for many unaccelerated-
flight helicopter calculations the rotor resultant force can be assumed
to be perpendicular to the tip-path plane and the thrust equal to the
gross weight without introducing serious errors.

CONCLUDING DISCUSSION

[}

Simple relations for the rotor blade angles and the values of Cq,

Cx, and Cy, derived upon the assumption of a triangular distribution
of blade-element circulation along the radius and a sinusoidal variation
with azimuth angle’in conjunction with a linear variation of profile
drag with 1ift, would appear to be useful for helicopter and converta-
plane performance estimation and the determinstion of the equilibrium
angle of attack and lateral tilt of the tip-path plane.

The blade-element equations, based upon the reiation.that
c; = a sin ar = a(sin 6y cos Py + cos 6y sin @y), and the opc and
Ons functions of the blade-chord and blade-twist distribution afford

a reasonably exact and concise treatment of the geometry and should be
useful for convertaplane as well as helicopter calculations.

»
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The use of the empirical relation Cdy = €9 t+ €1 sin ar + €p cos ar,
rather than the usual expression that cgy = 5g + Bjap + Sgarg, consid-

erably simplifies the equétions for the in-plane forces and moments and
presents a sufficlently exact solution of the geometry for helicopter
calculations.

For convertaplane calculations, the approximation that
Cdy, = €1 sin ap + €5 cos a. allows an exact treatment of the geometry

and should be & sufficiently accurate ex@ression for Cdg at the larger

advance ratios where the effects of the profile drag become of less
relaetive importance.

The larger sources of the remaining errors in the blade-element
analysis probably have the following order of importance for contemporary
helicopters:

(1) The neglect of the effects of blade-element stall implied in
the relation that cy; = a sin a,

(2) The neglect of the effects of blade flexibility

(3) The neglect of the radial variation in the normal component
of the induced velocity

(4) The neglect of the effects of compressibllity on the tip
sections of the advancing blade.

Georgia Institute of Technology
Atlanta, Ga., May 15, 1951

U N USSPV Y e e e e e e e e e e e e e T e e it e e e S = o+ o? o 5 > oomr o oman o
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TABIE 1

VALUES OF o FOR BLADES WITH LINEAR TAPER

Ehterpolate for values for given t; 0g = %%;
Ctip -
t = COP -1; c=cy(1+ t%ﬂ
t 01/9, g2/00 03/0g oy/9g
Xl = O . 15
0 0.8500 0.4888 0.3322 0.2499
-1 .3612 .1566 .0823 .0k99
xl = 0.20
0 0.8000 0.4800 0.3307 0.2496
-1 .3200 .1493 .0811 .ok9T
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TABLE 2
VALUES OF o,. FOR BLADES WITH LINEAR TAPER, LINEAR

TWIST, AND x, = 0.15

l:Interpolate for values for given t first and then for vaelues for

c
given 91, reference station for AO at x = 0; Op = E?’

c ) 3 .
t:ﬂﬂ_l; c=c0(l+tx); 6t=61x:l

(deg) :
t=0]t=-1|t=0|t=-1]t=0 |t=-1]t=0 |t =-1

o | 0.8500 |0.3612 | 0.4888 | 0.1566 |0.3322 | 0.0823 | 0.2499 | 0.0499
= Bho2 | .3611 1 .uB82 | .1565 | .3317 | .0822 ) .2495 | .0498
-8 Bu68 | .3604 | 4864k | .1561 | .3303 | .0820 | .2483-| .ou9T7

-12 B¥27 | .3594 | .4833 | .1555 | .3278 | .0816 | .2462} .o4kok
-16 8371 .3%80 | .479i| .1546 | .3244 | .0810 | .2434{| .0490
-20 82099 | .3%62 1 .4737 | .1536 | .3201 | .0803| .2398 | .0u485
-2 Bo11 | .3/ | Lhe71 | L1522 | L3148 | .o794 | .2354 | o478

-28 8108 | .3515 | .bsok | L1507 | .3087 | .o784 | .2303 | .o471
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i TABLE 3

VALUES OF o,, FOR BIADES WITH LINEAR TAPER, LINEAR

5

TWIST, AND x. = 0.15

1

E%terpolate for values for given +t <first and then for velues for

. p - 0. _ Co.
given 61, reference station for AO at x 0; 7 =
t = 5232 -1; c=cy(l+tx); 6p = 61%] .
91 Uls/do‘ 025/00‘ ‘°3s/UO ' Ous/%
(dee)| ¢ o |t =-2f{t-0|t=c1lt=0|t=w1|t=0|t=-
ol o 0 1o . 0 0 0 0 0
~4 | -.0341| -.0109 | -.0232 | -.005T | -.01T4 | -.0035.| -.0139 | -.0023
8| -.0681| -.0219 | -.0463 | -.0115 | -.0348 | -.0070 | -.0279 | -.0047
-12 | -.1020| ~-.0327 | -.0693 | -.0172 | -.0521 | -.010% | -.0M17 | -.0070
-16 | -.1356| -.0435 | -.0920 | -.0229 | -.0692 | -.0138 | -.0553 | -.0092
-20 | -.1699 | -.0531 | -.1145 | -.0284 | -.0860 | -.0173 { -.0688 | -.0115
24 | -.2017| -.0650 | -.1367 | -.0341 | -.1026 | -.0206 | -.0820 | -.0137
28 | -.2340 | -.0756 | -.1585 | -.0396 | -.1189 | -.0239 | -.0950 | -.0159

— .. - et e ———— e v —— — o v A e e o e . T i s T s ~s
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TABLE L
VALUES OF o,. FOR BLADES WITH LINFAR TAPER, HELICAL

TWIST, AND x; = 0.20

E:nterpolate for values for given t first and then for values of

B : . = So.
given GT, reference station for AO at blade tip; Oq = _nE’

C
_ _tip . - . - -1
t=—=2-1; c= co(l + tx); 6y = tan 1<E-tan‘eiﬂ

%1¢/%: 92¢/% 93¢/% T4e/%
(deg)|t =0 [t =-1|lt =0 Jt=-1]t=0 |t=-1]t=0 [t ="-1

0 |0.8000 |0.3200 | 0.4800 | 0.1493 | 0.3307 | 0.0810 | 0.2496 | 0.049T
4| .7906 | 3144 | Jh762 | 14Tk | .3287| .0803 | .2u8L4k | .0L493
81 .7654 | .3002| .4651 | .1k19} .3233| .0782| .2451 | .0483
-12 | .7305 | .2804k | .b500| .1351| .3149| .07l | .2398 | .0LE8
~16 | .6907 | .2594 | 4313 .1270| .3042| .O714| .2328 | .oLu4B
20 | .6489 | .2385 | .hiok| .1185| .2919| .06T7h | .22k | .okoT
24 | 6065 | .218% | .3882| .1100| .2782) .0632| .2151| .okok
-28 | 5645 | .199% | .3651| .1016| .2635| .0590| .2046 | .0379
-32 | .5231 | .1815| .3416 | .0934| .2481| .o547 | .1935 | .0354

W
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VALUES OF o

ns

TABLE 5

55

FOR BIADES WITH LINEAR TAPER, HELICAL

TWIST, AND %3 = 0.20

Enterpolate for values for given t first and then for values for

Cc

given 6Oq; reference station for Ay at blade tip; oy = 2.

Ctip -1/1
t -2 - 1; ¢ =coll +tx); 6 = tan (E-tan eiﬂ
Orp 915/%0 O2g/% 938/%0 O4s/%0
(deg) |t =0 [t =1t =0 |t =-L|{t =0 lt==l|t =0 [t =-1
oo 0 o} 0 0 0 0 0
“4 | ~,1106 | -.0553 | =.0553 | -.0220 | -.0333 | -.0103 | -.0230 | -.0056
8 | -.2121 | -.2045 | -.2076 | -.0422 | ~.0654 | -.0200 | -.0454 | =.0110
-12 | -.3005 | -.1452 | -.1553 | -.0596 | -.0957 | -.0287 | -.0669 | -.0160
-16 | -.3761 | -.1780 | -.1981 | -.0TM4 | -.1237 | -.0364 | -.08T72 | -.0205
-20 | - 4405 | -.20Lk | ~,2365 | -.0872 | -.149L | ~-.0431 | -.1062 | -.0245
24 | -.4956 | -.2256 | -.2T01 | -.0972 | -.1728 | -.0490 | -.1239 | -.0281
-28 |'-.5430 | -.2428 | -.3002 | -.2060 | -.1941 | -.0540 | -.1401 | -.0313
-32 | -.5838 | -.2570 | -.3269 | -.113%4 | -.2134 | -.0584 | -.1551 | -.0342




TABLE 6

COHPARIEON OF EXPERIMENTAL AND CALCULATED VALOES OF PARAMETERS FOR

THOSE RUMS OF HEFEHRFMCE 1 FOR WEICE Cgp = 0.00%43

[All anglan in deg; tip stall on rum §|

Bun 7T Bun b Run 2
Cp = 0.005k3; OR = ki3 rt/eac Cp = 0.00530; OR = WAT ft/sec Cp o 0.00545) OR = 44% ft/sec
Lovel f£light at 43.7 mph Lavel flight at 58.6 mph Lavel flight &t T1.7 mph
Paramatsr
Exparimantal Oelculated Calculatad Experimontal Calculated Oeloulatod Erparimantal Caloylated Oalculutod
() (1) (n) {v) (a) (v)
a 2.2 : -h.8 -6.9
a
T 23,4 23,7 pl.1
¥ 0 - 0 o
Ty -2.08 -1.99 -31.83 -3.79 -5.082 -9.73
Ay 7.11 7.1k T1.35 8.17 7.65 7.93 10,10 T2 9.19
i 2.92 3.08 2.88 Yokt [ 95 3.8% 6.08 6,65 5,05
[ 8.16 8.88 T.99 8.30 8.25 8.02 B.67 8.39 a2
by 3.2 2.7k 2,78 3.30 3.00 3.06 3.93 3.1 3.ko
ap 0.2k 0.16 0.17 0.35 0.28 0.28 0.4 0.4 0.k
By 0.00 0.00 -0.0k -0.08 0.00 0,09 -0, 11 . 0.00 -0.17
Cq 0.000202 0.00020k 0.00020% 0.00025k 0.000230 0.000218 0.0003k2 %.000354 40.000328
7Y 1.8 -7.68 -7.73 -8.83 -B.63 -8.18 -12.7%0 -13.32 -12,
By, 0.4 0.m2 0,54 0.57 0.67 0.66
- -0.21 -0.08 -0.18 -0.11 -0.87 -0.18
Cx ~0.00004L -0.0000k5 -0,000056 =0.000062 -0.,0000%2 ~0.000110
oy -0.000283 -0.000319 =0.000370
Tan~1 ) -0.21 -0.50 0.8
Oy - -0.08 -0.,09 0.06
ey ~2.08 -1.99 -3.83 -3.7h -m.82 -5,75 -
(i'k) 0.013 ) 0.029 0.0%
Cp Jamd ‘

SGalculated from circulation squatians.
bealculated from blade-element equations.

©3 g £t wdded to fuselage drag area f from referance 7 to

sllov for rotor-hudb, blada-shank, counter-torque-rotor, and angina-ccoling drag.
STnclodes correction for tip stall.
®Machanical input subtracted.

9%
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TABLE 6 - Copcludad

COMPAHISOR OF FEOXFERTMENTAL AND CALCULATED VALUES OF PARAMETERE FOR

THOSE RUNB OF HEFERFRCE 1 TOR WEICH O = 0.00343 - Concluded

Run 11 Run 15
Cp = 0.00548; OR = W43 ft/sec Cp = 0.00549; OR = 443 ft/sac
=08 ft/min climb at 51.8 mph 1p60 ft/min autorotative dsscent at 37.7 mph
Peramster w
Exporimontal Caloulated Caloulated Experimental Calculatad Oalculated
(u) {v) (=) (v)
ar -10.1 -1G,k
s 234 26.%
o 6.5 £0.80
Gy -9.97 -9.55 18.77 18.55
Ag 10.00 8.95 9.%0 3K k.10 3.7L
a) k.23 k.32 3.81 1.07 1.8%4 1.8
8y 9.15 8.38 8.k2 7.53 8.k 7.8
i 3.56 2.78 2.88 2.86 2.62 2.8
ap 0.33 0.22 0.24 0.08 0.11 0.12
b, -0.10 0.00 -0.08 -0.02 0.00 -0.00
Cq 0,0005%9 0.000320 0.000322 -0.000008 -0.000014 -0.000016
Ep ~13.03 -12.36 -12.1%4 -0.03 0.51 0.62
- ‘e, 0.70 0.5 0.21 0.53
r, .37 .16 . 0.26 -0.01
Cx -0.000086 -0.00005%3 0.000011 0.000010
Cy -0.000296 ~0.,000293
Ta.n'l(;i!-) -0.k3 0.06
6r 0.71 1.63
oy -3.h0 -2.98 £.03 g.2h
(A—CI) 0.021 0.008
Cr/3ra

*gntculated from circulation equations.
Vaaleulated from blade-elemant aquations.

93 sq £t addsd to fusaloge drag area rJrrmrofmantoa.llm .
for rotor-hub, blade-shank, countsr-tarqua-rotor, and engine -cooling drag.

“Mochanical jmput’ subtracted.

N8
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TABLE T

‘ 2 : . — .. 2
VALUES OF Xi:ﬂ_E.Iv /—ﬁ—g'c; FOR GIVEN VALUES OF )\, = —03—”';
T

Vs:f.ncxll/;--3;.!."..2
AND A, = Ty

smy

A
Ay
0 0.4 0.60 0.80 1.00 1.20 1.ko 1.60 1.80 2.00

2.0 | 0.960 Po.7ho bo.580 | 0.481 | 0.457 | 0.433 | 0.4%10 | 0.390 | 0.371 | 0.3%9
2.20 [ ®1.1k | P88 | P68 | 543 509.| .k76 | Lhkh | 8 | .392 [ .369
2.00 | #1.36 | br.07 b.82 .630 57k .526 484 450 a8 .389
1.80 | 81.65 b1.34 b1.03 167 .659 .585 .529 483 s o
1.60 | @82.26 | b1.81 b1.42 1.000 .76_9 .65k STT .518 A2 .h32
1.40 | 82.4% | P2.os | Pr.77 | 1.220 .896 12T .627 .550 96 452
l.20 | ®2.24 | b1, b1.65 | 1.25 976 | 789 | .668 | .582 | .520 | .470
1.00 | ®2.00 | P17z |Pisse | 1.21 | 1.000 | L824 | .698 | .613 | .539 | .u85
.80 | 21.80 | P156 [P1.39 | 1.15 .98k | .833 73| .621 | .552 | .ok
.60 | 81.60 | Pi.s1 |Pr.2r | 1.07 | .47 | 820 | .2 | .625 | .556 | .500
Ao | 21.k2 b1.28 | b1.16 1.00 .897 .792 .698 .619 554 .500
.20 | 8.5 | 115 |P1.06 .92k .82 .T56 677 606 .547 gk

0 81.10 | Pr.02 | DP.96
o} 1.000 961 .91k .854 .786 .T15 .648 .586 .533 186
-.20 .905 87 .833 .T87 731 .673 .613 .56k 516 Ltk
-.lo .820 .796 .T65 .72k .680 .632 .58k .539 RTsyd 6L
~.60 T4k 125 .699 .668 .630 592 .551 .513 A7 k3
-.80 677 .658 .6lo .615 .586 553 .520 487 453 26
-1.00 .618 .605 .588 .569 Skl 517 189 Ji62 L35 oo
-1.20 .566 556 .543 .526 .506 L8 RIT) 433 A3 .392
-1.k0 521 512 .501 .88 A72 453 433 a3 .39k 374
-1.60 481 4T3 BT R 4o 26 408 .391 374 .358
-1.80 s 139 432 Joh Jaa .399 .385 .371 .356 .3
-2.00 Lk .hog o3 .395 .386 .376 .364 .352 .339 .326
-2.40 .362 .358 .355 350 | .34%2 | .33% | .327 | .318 .308 | .298
-2.80 .320 .318 .316 .311 .306 .301 .29k .287 .280 273
-3.20 .287 .28) .282 .280 276 .272 .267 .262 .256 .250
-3.60 .259 257 256 .5k 251 .248 .2hh .2ho .236 .231
-k.00 .236 .235 .234 .233 .230 .227 225 .223 .221 .21h
-5.00 .193 .192 .192 .191 .189 .187 .186 .184 .182 .180
-6.00 162 .162 .162 .161 .160 .159 .158 157 .156 155
-8.00 .123 .123 .123 122 122 122 121 121 .120 .120
-10.00 .100 .100 .100 .100 .099 .099 .099 .098 .058 .097

8Fxperimental .

bEstimated .




NACA TN 2656

TABILE 7 - Concluded
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2 2
VALUES OF % = 2" 3" ror grven vaLuEs oF Mg = 2 = Sy
QR Crp _ Cop
{ . 2
AND ), = Y oin ay 2 - Suy - Concluded
QR V Cq
Ax

A'Z
.ho |2.80 [3.20 {3.60 |[L4.00 |5.00 |6.00 |8.00 {|10.00
2.0 [0.315 (0.285 |0.261 |0.239 |0.210 | 0.18% 0.156 | 0.120 | 0.097
2.20 | .329| .295 | .267 | .245 | .22hf .186 | -.158 | .121| .098
2.00 | 344 | .305 | .275 | .250 | .228| .188 | .159 | .122 .099
1.80 | .357 | 315 | .282| .56 | .233| .191 | .161| .122 .099
1.60{ .370 | .325 | .289 | .260| .237| .192 | .162| . 123 | .099
1.k0| .384 | .333 | .295 | .265| .240| .195 21631 .12k | .099
1.20 | .395 | .341 | .30L | .269 | .243}{ .196 | .164{ .12k | .099
1.00 | .hok | .347 | .30€ | .272| .246| .197 | .165| .12k | .100
8o | W3 352 .300 | 276 | .248| .198 | .166| .125| 100
601 5| .356 | .311 277 .2k L199 | 166 ] .125 | .100
Lo | M6} 357 | .31z | 278 | .250| .200 | .167 125 | .100
20| WMk 357 312 | 218 | .250| .200 | L1671 . 125 | .100
0 o | 354 | .310 | 278 | .250| .200 | .167 125 | 100
-.20 | .hok | .350 | .309 | .275 | .28 | .199 | .166 125 | .100
-.bo| 395 385 | 305 | .273 | .ok7| .198 | .166 125 | .100
-.60] .386| .339| .301 | .270 | .245| .197 | .165 125 | .100
-.80 | .374| .331 | .296 | .267 | .2k2| .196 | .165 125 | .100
-1.00 | .362| .323 | .90 | .262 | .239| .i94 | .16L4 | .12k .099
-1.20 | .34 | .34 | .28 | .258 | .235| .192 | .163 | .12k .099
-l.bo .337| .305 | .277 | .252 | .231| .190 | .161 123 | .099
-1.60| .35 | .296 | .270 | .2k7 | .227| .188 | .160 | .122 | . 099
-1.80 | .312| .286 | .263 | .2k | .223| .186 | .158 | .121 | . 098
-2.00 { .300 | .277 | .255 | .236 | .219| .183 | .157 | .121 | .098
-2.4bo | 218 | 259 | 241 | .22k | .209 | .178 153 | 119 | .097
-2.80 | .258 | .2h2 | 227 | .213 | .200| .172 JAbko | 127 | .096
-3.20{ .239 | .226 | .21% | .202 | .191| .166 | .15 | .115 | .095
-3.60| .222} 216 | .201 | .191 | .182] .160 | .1k 13 | .09k
-4.00 | .207 | .198 |- .189 | .181 | .173| .15k | .137 | .111 | .093
-5.00| .175} .170 | .16% [ 159 | .155( .139 | .127 | .105 | . 089
-6.00 | .152 | .148 | .14k | .1ko | .137| .126 | .117 094 085
-8.00] 118 .120 | .115 | .12 .111 .105 | .093 088 078
-10.00 | .096 | .095 | .09% | .093 | .092| .089 | .085 078 070

o e A e e
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Horizontel .

o o ——— s

~f-

Figure 2.~ Forcee on rotor. hub.
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2.0
1.6
’ .
CZ > — CZ = 6.5@
-8 f cy = 6.5 sin a
b —A—— c; From test data for
. NACA 0015; effective
% 6 6 Reynolds mumber, 1,230,000
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’
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Angle of attack, a, deg

Figure 3.- Comparison of expressions for cj.




0001 - gg-15-L - SHITFI-YOVR

cdy = 0.8439 - 0.0126 sin a - 0.8349 cos a
-0k VA — — ¢g, = 0.0090 - 0.0061la + 0.37520°
. 7 .
% e —A— cg, From test data for NACA 0015;

2.0— .02 ' effective Reynolds number, 1,230,000
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Figure L.- Comparison of expressions for cg .
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